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1. Topics
I Introduction to maximum-likelihood estimation

I Introduction to Bayesian inferenceLogit and probit models for dichotmous
data

I The structure of generalized linear models

I Poisson and other generalized linear models for count data

I Diagnostics for generalized linear models (as time permits)

I Logit and Loglinear models for contingency tables (as time permits)

I Implementation of generalized linear models in R
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2. Introduction to Maximum-Likelihood
Estimation
I The method of maximum likelihood provides estimators that have both

a reasonable intuitive basis and many desirable statistical properties.

I The method is very broadly applicable and is simple to apply.

I Once a maximum-likelihood estimator is derived, the general theory
of maximum-likelihood estimation provides standard errors, statistical
tests, and other results useful for statistical inference.

I A disadvantage of the method is that it frequently requires strong
assumptions about the structure of the data.
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2.1 An Example
I We want to estimate the probability of getting a head upon flipping a

particular coin.
• We flip the coin ‘independently’ 10 times (i.e., we sample = 10 flips),

obtaining the following result: .
• The probability of obtaining this sequence — in advance of collecting

the data — is a function of the unknown parameter :
Pr(data|parameter) = Pr( | )

= (1 ) (1 )(1 )

= 7(1 )3

• But the data for our particular sample are fixed : We have already
collected them.

• The parameter also has a fixed value, but this value is unknown, and
so we can let it vary in our imagination between 0 and 1, treating the
probability of the observed data as a function of .
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• This function is called the likelihood function:
(parameter|data) = ( | )

= 7(1 )3

I The probability function and the likelihood function are given by the
same equation, but the probability function is a function of the data
with the value of the parameter fixed, while the likelihood function is a
function of the parameter with the data fixed.
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• Here are some representative values of the likelihood for different
values of :

( |data) = 7(1 )3

0.0 0.0
.1 .0000000729
.2 .00000655
.3 .0000750
.4 .000354
.5 .000977
.6 .00179
.7 .00222
.8 .00168
.9 .000478

1.0 0.0
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• The complete likelihood function is graphed in Figure 1.
• Although each value of ( |data) is a notional probability, the function
( |data) is not a probability or density function — it does not enclose

an area of 1.
• The probability of obtaining the sample of data that we have in hand,

, is small regardless of the true value of .
· This is usually the case: Any specific sample result — including the

one that is realized — will have low probability.
• Nevertheless, the likelihood contains useful information about the

unknown parameter .
• For example, cannot be 0 or 1, and is ‘unlikely’ to be close to 0 or 1.

I Reversing this reasoning, the value of that is most supported by the
data is the one for which the likelihood is largest.
• This value is the maximum-likelihood estimate (MLE), denoted b.
• Here, b = 7, which is the sample proportion of heads, 7/10.
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Figure 1. Likelihood of observing 7 heads and 3 tails in a particular se-
quence for different values of the probability of observing a head, .
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I More generally, for independent flips of the coin, producing a particular
sequence that includes heads and tails,

( |data) = Pr(data| ) = (1 )

• We want the value of that maximizes ( |data), which we often
abbreviate ( ).

• It is simpler — and equivalent — to find the value of that maximizes
the log of the likelihood

log ( ) = log + ( ) log (1 )

• Differentiating log ( ) with respect to produces
log ( )

= + ( )
1

1
( 1)

=
1
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• Setting the derivative to 0 and solving produces the MLE which, as
before, is the sample proportion .

• The maximum-likelihood estimator is b = .
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2.2 Properties of Maximum-Likelihood Estimators

Under very broad conditions, maximum-likelihood estimators have the
following general properties:
I Maximum-likelihood estimators are consistent.

I They are asymptotically unbiased, although they may be biased in finite
samples.

I They are asymptotically efficient — no asymptotically unbiased estimator
has a smaller asymptotic variance.

I They are asymptotically normally distributed.

I If there is a sufficient statistic for a parameter, then the maximum-
likelihood estimator of the parameter is a function of a sufficient statistic.
• A sufficient statistic is a statistic that exhausts all of the information in

the sample about the parameter of interest.
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I The asymptotic sampling variance of the MLE b of a parameter can
be obtained from the second derivative of the log-likelihood:

V(b) = 1
2 log ( )

2

¸
• The denominator of V(b) is called the expected or Fisher information

I( )
2 log ( )

2

¸

• In practice, we substitute the MLE b into the equation for V(b) to
obtain an estimate of the asymptotic sampling variance, [V(b).
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I (b) is the value of the likelihood function at the MLE b, while ( ) is
the likelihood for the true (but generally unknown) parameter .
• The log likelihood-ratio statistic

2 2 log
( )

(b) = 2[log (b) log ( )]

follows an asymptotic chisquare distribution with one degree of
freedom.
· Because, by definition, the MLE maximizes the likelihood for our

particular sample, the value of the likelihood at the true parameter
value is generally smaller than at the MLE b (unless, by good
fortune, b and happen to coincide).
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2.3 Statistical Inference: Wald, Likelihood-Ratio, and
Score Tests

These properties of maximum-likelihood estimators lead directly to three
common and general procedures for testing the statistical hypothesis
0: = 0.

1. Wald Test: Relying on the asymptotic normality of the MLE b, we
calculate the test statistic

0
b 0q
[V(b)

which is asymptotically distributed as (0 1) under 0.
2. Likelihood-Ratio Test: Employing the log likelihood ratio, the test statistic

2
0 2 log

( 0)

(b) = 2[log (b) log ( 0)]

is asymptotically distributed as 2
1 under 0.
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3. Score Test: The ‘score’ is the slope of the log-likelihood at a particular
value of , that is, ( ) log ( ) .
• At the MLE, the score is 0: (b) = 0. It can be shown that the score

statistic

0
( 0)pI( 0)

is asymptotically distributed as (0 1) under 0.

I Unless the log-likelihood is quadratic, the three test statistics can
produce somewhat different results in specific samples, although the
three tests are asymptotically equivalent.

I In certain contexts, the score test has the practical advantage of not
requiring the computation of the MLE b (because 0 depends only on
the null value 0, which is specified in 0).

I The Wald and likelihood-ratio tests can be ‘turned around’ to produce
confidence intervals for .
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I Figure 2 compares the three test statistics.
I Maximum-likelihood estimation and the Wald, likelihood-ratio, and score

tests, extend straightforwardly to simultaneous estimation of several
parameters.

I When the log-likelihood function is relatively flat at its maximum, as
opposed to sharply peaked, there is little information in the data about
the parameter, and the MLE will be an imprecise estimator: See Figure
3.

I Maximum-likelihood estimation and the various tests extend straightfor-
wardly to the simultaneous estimation of several parameters.
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Likelihood-ratio test

Score test

Wald test

Figure 2. Likelihood-ratio, Wald, and score tests.
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Figure 3. Two imagined log likelihoods: one strongly peaked, providing
high information about the the parameter ; and the other flat, providing
low information about .
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2.4 Example (Continued)
I Recall the log-likelihood from the coin-flipping example:

log ( ) = log + ( ) log (1 )

where is the number of heads in independent flips of a coin.
• The derivative of the log-likelihood is (again, recall)

log ( )
=

1

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 19

I To get the Fisher information, we need the second derivative of the log
likelihood, which is

2 log ( )
2

=
2 (1 )2

• Noting that the expected number of heads is ( ) = , the Fisher
information is

I( ) =
2 log ( )

2

¸
=

2
+
(1 )2

=
(1 )
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• Then the asymptotic variance of the sample proportion b is

V(b) = 1

I( ) =
(1 )

and the estimated asymptotic standard error of the sample proportion
is

SE(b) =rb(1 b)
which is the familiar result for the standard error of a proportion.
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2.4.1 Wald Test
I Suppose that we want to test the hypothesis that the coin is fair, 0:

= 5, and that our sample has = 7 heads in = 10 flips, so thatb = 7 10 = 7.
• Then

SE(b) =r 7(1 3)

10
= 0 1449

• The Wald test statistic is

0 =
b 0

SE(b) = 7 5

0 1449
= 1 380

for which the two-sided -value (from the standard-normal distribution)
is = 167.
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2.4.2 Likelihood-Ratio Test
I The likelihood is

( ) = (1 )
• So the log-likelihood at the MLE and at the hypothesized value of

are, respectively,
log (b) = log [ 77(1 7)3] = 6 1086

log ( 0) = log [ 5
7(1 5)3] = 6 9315

• The likelihood-ratio (LR) test statistic is
2
0 = 2[log (b) log ( 0)]

= 2( 6 1086 6 9315) = 1 646

• From the 2 distribution with one degree of freedom, the -value for
this test statistic is = 199.

• Converting the chisquare test statistic to a standard-normal test
statistic produces 0 = 1 646 = 1 283, which differs somewhat from
the Wald test statistic.

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 23

2.4.3 Score Test
I We need the score at the null value

( 0) =
log ( )

¯̄̄̄
= 0

=
0 1 0

=
7

5

10 7

1 5
= 8 0

and the Fisher information at the null value
I( 0)

0(1 0)

=
10

5(1 5)
= 40 0
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I Then the score statistic is

0 =
( 0)pI( 0)

=
8 0

40 0
= 1 265

• From the standard-normal distribution, the two-sided -value is
= 206.

• In this case, therefore, the score statistic is closer to the likelihood-ratio
statistic than the Wald statistic is.
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2.4.4 An Exact Test
I In this simple setting, an exact binomial test is available (as you likely

learned in basic statistics).

I The distribution of the sample proportion b and of the number of heads
is

Pr(b = ) = Pr( = ) =
!

!( )!
(1 ) for = 0 1 2
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I The null distribution for the current example follows from setting
= 0 = 5 and = 10, and is given in the following table:

b = 10 Pr( = )
0 0 0 000977
1 1 009766
2 2 043945
3 3 117188
4 4 205078
5 5 246094
6 6 .205078
7 7 117188
8 8 043945
9 9 009766
10 1 0 000977
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I Having obtained = 7 heads (i.e., b = 7), the two-sided -value for
the hypothesis is Pr( 3 or 7) = 3437, quite different from the
results produced by the three asymptotic tests. Of course, = 10 is a
very small sample.
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2.4.5 Confidence Intervals
I The Wald and LR statistics can be inverted to produce confidence

intervals.

I The Wald interval is particularly simple; e.g., for a 95-percent confidence
interval:

= b ± 1 96× SE(b)
= 7± 1 96× 0 1449
= 7± 284

= ( 416 984)

I The confidence interval based on the LR statistic includes all values of
that cannot be rejected when tested as hypotheses given the observed
value of b.
• To be statistically significant at the .05 level, a chisquare statistic with

one degree of freedom must be at least 1 962 = 3 84.
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• That is, the confidence interval includes all values of for which
2[log (b) log ( )] 3 84

log (b) log ( ) 1 92

• This is illustrated, for the example, in Figure 4:
• The 95 percent confidence interval for runs from .394 to .915.

I With only = 10 observations, neither the Wald interval nor the LR
interval can be trusted.
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Figure 4. Likelihood-ratio-based 95 percent confidence interval for when
= 10 and b = 7.
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3. Introduction to Bayesian Inference
I Bayesian inference is an alternative to classical statistical inference

based on null-hypothesis significance tests and confidence intervals.

3.1 Bayes’ Theorem
I The conditional probability of an event given that another event is

known to have occurred is
Pr( | ) = Pr( )

Pr( )

I Likewise, the conditional probability of given is

Pr( | ) = Pr( )

Pr( )

I Solving for the joint probability of and produces
Pr( ) = Pr( | ) Pr( )
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I Substituting this result into the equation for Pr( | ) yields Bayes’
Theorem (named for Thomas Bayes, 1701–1761):

Pr( | ) = Pr( | ) Pr( )
Pr( )

I Bayesian statistical inference is based on the following interpretation of
Bayes’ Theorem:
• Let represent some uncertain proposition whose truth or falsity we

wish to establish—for example, the proposition that a parameter is
equal to a particular value.

• Let represent observed data that are relevant to the truth of the
proposition.
· The unconditional probability Pr( ), called the prior probability of ,

is our strength of belief in the truth of prior to collecting data.
· Pr( | ) as the probability of obtaining the observed data assuming

the truth of —that is, the likelihood of the data given (in the
sense of the preceding section).
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· The unconditional probability of the data is
Pr( ) = Pr( | ) Pr( ) + Pr( | ) Pr( )

· Then Pr( | ) is called the posterior probability of and represents
our revised strength of belief in in light of the data .

I Bayesian inference is therefore a rational procedure for updating one’s
beliefs on the basis of evidence.

I This subjectivist interpretation of probabilities contrasts with the
frequentist interpretation of probabilities as long-run proportions.
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3.2 Preliminary Example
I You are given a gift of two “biased” coins, one of which produces heads

with probability Pr( ) = 3 and the other with Pr( ) = 8.

I Each of these coins comes in a box marked with its bias, but you
carelessly misplace the boxes and put the coins in a drawer; a year later,
you do not remember which coin is which.

I To try to distinguish the coins, you pick one arbitrarily and flip it 10 times,
obtaining the data —that is, a particular sequence of
7 heads and 3 tails.

I Let represent the event that the selected coin has Pr( ) = 3; then
is the event that the coin has Pr( ) = 8.

I Under these circumstances, it seems reasonable to take as prior
probabilities Pr( ) = Pr( ) = 5.
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I The likelihood of the data under and is
Pr( | ) = 37(1 3)3 = 0000750

Pr( | ) = 87(1 8)3 = 0016777

• As is typically the case, the likelihood of the observed data is small in
both cases, but the data are much more likely under than under .

I Using Bayes’ Theorem, you find the posterior probabilities

Pr( | ) = 0000750× 5

0000750× 5 + 0016777× 5
= 0428

Pr( | ) = 0016777× 5

0000750× 5 + 0016777× 5
= 9572

suggesting that it is much more probable that the selected coin has
Pr( ) = 8 than Pr( ) = 2.
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3.3 Extending Bayes Theorem
I Bayes’ Theorem extends readily to situations in which there are more

than two hypotheses and :

I Let the various hypotheses be represented by 1 2 , with prior
probabilities Pr( ) = 1 that sum to 1; and let represent the
observed data, with likelihood Pr( | ) under hypothesis .
• Then the posterior probability of hypothesis is

Pr( | ) = Pr( | ) Pr( )P
=1Pr( | ) Pr( )

• The denominator insures that the posterior probabilities for the various
hypotheses sum to 1.
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• It is sometimes convenient to omit this normalization, simply noting
that

Pr( | ) Pr( | ) Pr( )
that is, that the posterior probability of a hypothesis is proportional
to the product of the likelihood under the hypothesis and its prior
probability.

I Bayes’ Theorem is also applicable to random variables:
• Let represent a parameter of interest, with prior probability distrib-

ution or density ( ), and let ( ) = ( | ) represent the likelihood
function for the parameter .
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• Then
( | ) = ( ) ( )P

all 0 ( 0) ( 0)
when the parameter is discrete, or

( | ) = ( ) ( )R
( 0) ( 0) 0

when, as is more common, is continuous.
• In either case,

( | ) ( ) ( )

• The posterior distribution or density is proportional to the product of
the likelihood and the prior distribution or density.

I We require a prior distribution ( ) over the possible values of the
parameter (the parameter space) to set the machinery of Bayesian
inference in motion.

I In contrast to classical statistics, we treat the parameter as a random
variable rather than as an unknown constant.
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3.4 Conjugate Priors
I The mathematics of Bayesian inference is especially simple when the

prior distribution is selected so that the likelihood and prior combine to
produce a posterior distribution that is in the same family as the prior.
• In this case, we say that the prior distribution is a conjugate prior.

I At one time, Bayesian inference was only practical when conjugate
priors were employed, limiting its scope of application.
• Advances in computer software and hardware, make it practical to

evaluate mathematically intractable posterior distributions by simulated
random sampling.

• Such Markov-chain Monte-Carlo (“MCMC”) methods have produced a
flowering of Bayesian applied statistics.
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3.5 An Example of Bayesian Inference
I Continuing the previous example, suppose more realistically that you

are given a coin and wish to estimate the probability that the coin turns
up heads, but cannot restrict in advance to a small set of discrete
values
• could, in principle, be any number between 0 and 1.

I To estimate , you plan to gather data by independently flipping the coin
10 times.
• We know from our previous work that the likelihood is

( ) = (1 )10

where is the observed number of heads.
• You conduct the experiment, obtaining the data ,

and thus = 7.
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I The conjugate prior for the this Bernouli likelihood is the beta distribution

( ) =
1(1 ) 1

( )
for 0 1 and 1

where ( ) is the beta function.
• Some beta distributions are shown in Figure 5

I When you multiply the beta prior by the likelihood, you get a posterior
density of the form

( | ) + 1(1 )10 + 1 = 6+ (1 )2+

• This is a beta distribution with parameters + 1 = 6 + and
10 + 1 = 2 + .

• Put another way, the prior in effect adds heads and tails to the
likelihood.

I How should you select and ?

I One approach would be to reflect your subjective assessment of the
likely value of .
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Figure 5. Beta distributions for several combinations of values of the para-
meters and . As is apparent in panel ( ), the beta distribution reduces
to the rectangular distribution when = = 1.
c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 43

• For example, you might examine the coin and note that it seems to be
reasonably well balanced, suggesting that is probably close to 5.

• Picking = = 16 would in effect confine your estimate of to the
range between 3 and 7.

• If you are uncomfortable with this restriction, then you could select
smaller values of and .

• In the extreme, = = 1, and all values of are equally likely—a
so-called flat prior distribution, reflecting complete ignorance about the
value of .

I Figure 6 shows the posterior distribution for under these two priors.
• Under the flat prior, the posterior is proportional to the likelihood, and

therefore if you take the mode of the posterior as your estimate of ,
you get the MLE, b = 7.

• The informative prior = = 16, in contrast, has a mode at 55 ,
which is much closer to the mode of the prior distribution, = 5.
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I As the sample size grows, the likelihood comes to dominate the posterior
distribution, and the influence of the prior distribution fades.
• In the example, if the coin is flipped times, then the posterior

distribution takes the form
( | ) + 1(1 ) + 1

• It is intuitively sensible that your prior beliefs should carry greater
weight when the sample is small than when it is large.
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Figure 6. Posterior distributions and 95% posterior intervals for the proba-
bility of a head and data 7 heads in 10 flips under two prior distributions:
the flat beta prior with = 1 = 1, and the informative beta prior with
= 16 = 16.
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3.6 Bayesian Interval Estimates
I As in classical inference, it is desirable not only to provide a point

estimate of a parameter but also to express uncertainty in the estimate.
• The posterior distribution of the parameter expresses statistical

uncertainty in a direct form.
• From the posterior distribution, one can compute various kinds

of Bayesian interval estimates, which are analogous to classical
confidence intervals.

I A very simple choice is the central posterior interval :
• The 100 percent central posterior interval runs from the (1 ) 2 to

the (1 + ) 2 quantile of the posterior distribution.
• Unlike a classical confidence interval, a Bayesian posterior interval

has a simple interpretation as a probability statement: The probability
is 95 that the parameter is in the 95-percent posterior interval.
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I 95 percent central posterior intervals for the example are shown for the
two posterior distributions in Figure 6.
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3.7 Bayesian Inference for Several Parameters
I Bayesian inference extends straightforwardly to the simultaneous

estimation of several parameters [ 1 2 ]0.

I In this case, it is necessary to specify a joint prior distribution for the
parameters, ( ), along with the joint likelihood, ( ).

I Then, as in the case of one parameter, the joint posterior distribution is
proportional to the product of the prior distribution and the likelihood:

( | ) ( ) ( )

I Inference typically focusses on the marginal posterior distribution of
each parameter, ( | ).
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4. Logit and Probit Models for Dichotomous
Data
I To understand why logit and probit models for qualitative data are

required, let us begin by examining a representative problem, attempting
to apply linear regression to it:
• In September of 1988, 15 years after the coup of 1973, the people

of Chile voted in a plebiscite to decide the future of the military
government. A ‘yes’ vote would represent eight more years of military
rule; a ‘no’ vote would return the country to civilian government. The
no side won the plebiscite, by a clear if not overwhelming margin.
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• Six months before the plebiscite, FLACSO/Chile conducted a national
survey of 2,700 randomly selected Chilean voters.
· Of these individuals, 868 said that they were planning to vote yes,

and 889 said that they were planning to vote no.
· Of the remainder, 558 said that they were undecided, 187 said that

they planned to abstain, and 168 did not answer the question.
· I will look only at those who expressed a preference.

• Figure 7 plots voting intention against a measure of support for the
status quo.
· Voting intention appears as a dummy variable, coded 1 for yes, 0 for

no.
· Support for the status quo is a scale formed from a number of

questions about political, social, and economic policies: High scores
represent general support for the policies of the miliary regime.
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Figure 7. The Chilean plebiscite data: The solid straight line is a linear
least-squares fit; the solid curved line is a logistic-regression fit; and the
broken line is from a nonparametric kernel regression with a span of .4.The
individual observations are all at 0 or 1 and are vertically jittered.
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• Does it make sense to think of regression as a conditional average
when the response variable is dichotomous?
· An average between 0 and 1 represents a ‘score’ for the dummy

response variable that cannot be realized by any individual.
· In the population, the conditional average ( | ) is the proportion

of 1’s among those individuals who share the value for the
explanatory variable — the conditional probability of sampling a
‘yes’ in this group:

Pr( ) Pr( = 1| = )

and thus,
( | ) = (1) + (1 )(0) =
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• If is discrete, then in a sample we can calculate the conditional
proportion for at each value of .
· The collection of these conditional proportions represents the sample

nonparametric regression of the dichotomous on .
· In the present example, is continuous, but we can nevertheless

resort to strategies such as local averaging, as illustrated in the
figure.
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4.1 The Linear-Probability Model
I Although non-parametric regression works here, it would be useful to

capture the dependency of on as a simple function, particularly
when there are several explanatory variables.

I Let us first try linear regression with the usual assumptions:
= + +

where (0 2), and and are independent for 6= .
• If is random, then we assume that it is independent of .

I Under this model, ( ) = + , and so
= +

• For this reason, the linear-regression model applied to a dummy
response variable is called the linear probability model.

I This model is untenable, but its failure points the way towards more
adequate specifications:

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 55

• Non-normality: Because can take on only the values of 0 and 1, the
error is dichotomous as well — not normally distributed:
· If = 1, which occurs with probability , then

= 1 ( )

= 1 ( + )

= 1

· Alternatively, if = 0, which occurs with probability 1 , then
= 0 ( )

= 0 ( + )

= 0

=

· Because of the central-limit theorem, however, the assumption of
normality is not critical to least-squares estimation of the normal-
probability model.
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• Non-constant error variance: If the assumption of linearity holds over
the range of the data, then ( ) = 0.
· Using the relations just noted,

( ) = (1 )2 + (1 )( )2

= (1 )

· The heteroscedasticity of the errors bodes ill for ordinary-least-
squares estimation of the linear probability model, but only if the
probabilities get close to 0 or 1.

• Nonlinearity: Most seriously, the assumption that ( ) = 0 — that is,
the assumption of linearity — is only tenable over a limited range of

-values.
· If the range of the ’s is sufficiently broad, then the linear specifica-

tion cannot confine to the unit interval [0 1].
· It makes no sense, of course, to interpret a number outside of the

unit interval as a probability.
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· This difficulty is illustrated in the plot of the Chilean plebiscite data,
in which the least-squares line produces fitted probabilities below 0
at low levels and above 1 at high levels of support for the status-quo.

I Dummy regressor variables do not cause comparable difficulties
because the general linear model makes no distributional assumptions
about the ’s.

I Nevertheless, if doesn’t get too close to 0 or 1, the linear-probability
model estimated by least-squares frequently provides results similar to
those produced by more generally adequate methods.

I One solution — though not a good one — is simply to constrain to the
unit interval:

=
0 for 0 +
+ for 0 + 1
1 for + 1
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I The constrained linear-probability model fit to the Chilean plebiscite
data by maximum likelihood is shown in Figure 8. Although it cannot
be dismissed on logical grounds, this model has certain unattractive
features:
• Instability: The critical issue in estimating the linear-probability model

is identifying the -values at which reaches 0 and 1, since the line
= + is determined by these two points. As a consequence,

estimation of the model is inherently unstable.
• Impracticality: It is much more difficult to estimate the constrained

linear-probability model when there are several ’s.
• Unreasonableness: Most fundamentally, the abrupt changes in slope

at = 0 and = 1 are unreasonable. A smoother relationship
between and , is more generally sensible.
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4.2 Transformations of : Logit and Probit Models
I To insure that stays between 0 and 1, we require a positive monotone

(i.e., non-decreasing) function that maps the ‘linear predictor’ = +
into the unit interval.
• A transformation of this type will retain the fundamentally linear

structure of the model while avoiding probabilities below 0 or above 1.
• Any cumulative probability distribution function meets this requirement:

= ( ) = ( + )

where the CDF (·) is selected in advance, and and are then
parameters to be estimated.

• If we choose (·) as the cumulative rectangular distribution then we
obtain the constrained linear-probability model.

• An a priori reasonable (·) should be both smooth and symmetric,
and should approach = 0 and = 1 as asymptotes.
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Figure 8. The solid line shows the constrained linear-probability model fit
by maximum likelihood to the Chilean plebiscite data; the broken line is for
a nonparametric kernel regression.
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• Moreover, it is advantageous if (·) is strictly increasing, permitting us
to rewrite the model as

1( ) = = +

where 1(·) is the inverse of the CDF (·), i.e., the quantile function.
· Thus, we have a linear model for a transformation of , or —

equivalently — a nonlinear model for itself.

I The transformation (·) is often chosen as the CDF of the unit-normal
distribution

( ) =
1

2

Z
1
2

2

or, even more commonly, of the logistic distribution

( ) =
1

1 +
where 3 141 and 2 718 are the familiar mathematical constants.
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• Using the normal distribution (·) yields the linear probit model :
= ( + )

=
1

2

Z +
1
2

2

• Using the logistic distribution (·) produces the linear logistic-
regression or linear logit model :

= ( + )

=
1

1 + ( + )

• Once their variances are equated, the logit and probit transformations
are so similar that it is not possible in practice to distinguish between
them, as is apparent in Figure 9.

• Both functions are nearly linear between about = 2 and = 8. This
is why the linear probability model produces results similar to the logit
and probit models, except when there are extreme values of .
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Figure 9. The normal and logistic cumulative distribution functions (as a
function of the linear predictor and with variances equated).
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I Despite their similarity, there are two practical advantages of the logit
model:

1. Simplicity: The equation of the logistic CDF is very simple, while the
normal CDF involves an unevaluated integral.
• This difference is trivial for dichotomous data, but for polytomous data,

where we will require the multivariate logistic or normal distribution,
the disadvantage of the probit model is more acute.

2. Interpretability: The inverse linearizing transformation for the logit
model, 1( ), is directly interpretable as a log-odds, while the inverse
transformation 1( ) does not have a direct interpretation.
• Rearranging the equation for the logit model,

1
= +

• The ratio (1 ) is the odds that = 1, an expression of relative
chances familiar to gamblers.

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 65

• Taking the log of both sides of this equation,
log

1
= +

• The inverse transformation 1( ) = log [ (1 )], called the logit of
, is therefore the log of the odds that is 1 rather than 0.

• The logit is symmetric around 0, and unbounded both above and
below, making the logit a good candidate for the response-variable
side of a linear model:
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Probability Odds Logit

1
log

1
01 1 99 = 0 0101 4 60
05 5 95 = 0 0526 2 94
10 1 9 = 0 1111 2 20
30 3 7 = 0 4286 0 85
50 5 5 = 1 0 00
70 7 3 = 2 333 0 85
90 9 1 = 9 2 20
95 95 5 = 19 2 94
99 99 1 = 99 4 60
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• The logit model is also a multiplicative model for the odds:

1
= + =

=
¡ ¢

· So, increasing by 1 changes the logit by and multiplies the odds
by .
· For example, if = 2, then increasing by 1 increases the odds by

a factor of 2 2 7182 = 7 389.
• Still another way of understanding the parameter in the logit model

is to consider the slope of the relationship between and .
· Since this relationship is nonlinear, the slope is not constant; the

slope is (1 ), and hence is at a maximum when = 1 2, where
the slope is 4:
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(1 )
01 × 0099
05 × 0475
10 × 09
20 × 16
50 × 25
80 × 16
90 × 09
95 × 0475
99 × 0099

· The slope does not change very much between = 2 and = 8,
reflecting the near linearity of the logistic curve in this range.

I The least-squares line fit to the Chilean plebescite data has the equationbyes = 0 492 + 0 394× Status-Quo
• This line is a poor summary of the data.
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I The logistic-regression model, fit by the method of maximum-likelihood,
has the equation

log
byesb no

= 0 215 + 3 21× Status-Quo

• The logit model produces a much more adequate summary of the
data, one that is very close to the nonparametric regression.

• Increasing support for the status-quo by one unit multiplies the odds
of voting yes by 3 21 = 24 8.

• Put alternatively, the slope of the relationship between the fitted
probability of voting yes and support for the status-quo at byes = 5 is
3 21 4 = 0 80.
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4.3 Logit and Probit Models for Multiple Regression
I To generalize the logit and probit models to several explanatory variables

we require a linear predictor that is a function of several regressors.
• For the logit model,

= ( ) = ( + 1 1 + 2 2 + · · · + )

= (x0 )

=
1

1 + x0

or, equivalently,
log

1
= + 1 1 + 2 2 + · · · +
= x0

• For the probit model,
= ( ) = ( + 1 1 + 2 2 + · · · + )

I The ’s in the linear predictor can be as general as in the general linear
model, including, for example:
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• quantitative explanatory variables;
• transformations of quantitative explanatory variables;
• polynomial regressors formed from quantitative explanatory variables;
• dummy regressors representing qualitative explanatory variables; and
• interaction regressors.

I Interpretation of the partial regression coefficients in the general
logit model is similar to the interpretation of the slope in the logit
simple-regression model, with the additional provision of holding other
explanatory variables in the model constant.
• Expressing the model in terms of odds,

1
= ( + 1 1+···+ )

=
¡

1
¢

1 · · · ¡ ¢
• Thus, is the multiplicative effect on the odds of increasing by 1,

holding the other ’s constant.
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• Similarly, 4 is the slope of the logistic regression surface in the
direction of at = 5.

I The general linear logit and probit models can be fit to data by the
method of maximum likelihood.

I Hypothesis tests and confidence intervals follow from general proce-
dures for statistical inference in maximum-likelihood estimation.
• For an individual coefficient, it is most convenient to test the hypothesis

0: =
(0) by calculating the Wald statistic

0 =

(0)

SE( )
where SE( ) is the asymptotic standard error of .
· The test statistic 0 follows an asymptotic unit-normal distribution

under the null hypothesis.
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• Similarly, an asymptotic 100(1 )-percent confidence interval for is
given by

= ± 2SE( )
where 2 is the value from (0 1) with a probability of 2 to the
right.

• Wald tests for several coefficients can be formulated from the
estimated asymptotic variances and covariances of the coefficients.

• It is also possible to formulate a likelihood-ratio test for the hypothesis
that several coefficients are simultaneously zero, 0: 1 = ··· = = 0.
We proceed, as in least-squares regression, by fitting two models to
the data:
· The full model (model 1)

logit( ) = + 1 1 + · · · + + +1 +1 + · · · +
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· and the null model (model 0)
logit( ) = + 0 1 + · · · + 0 + +1 +1 + · · · +

= + +1 +1 + · · · +
· Each model produces a maximized likelihood: 1 for the full model,

0 for the null model.
· Because the null model is a specialization of the full model, 1 0.
· The generalized likelihood-ratio test statistic for the null hypothesis is

2
0 = 2(log 1 log 0)

· Under the null hypothesis, this test statistic has an asymptotic
chisquare distribution with degrees of freedom.

• A test of the omnibus null hypothesis 0: 1 = · · · = = 0 is obtained
by specifying a null model that includes only the constant, logit( ) = .
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• The likelihood-ratio test can be inverted to produce confidence
intervals for coefficients.

• The likelihood-ratio test is less prone to breaking down than the Wald
test.

c° 2012 by John Fox York SPIDA



Generalized Linear Models and Related Topics 76

I An analog to the multiple-correlation coefficient can also be obtained
from the log-likelihood.
• By comparing log 0 for the model containing only the constant with
log 1 for the full model, we can measure the degree to which using
the explanatory variables improves the predictability of .

• The quantity 2 2 log , called the residual deviance under the
model, is a generalization of the residual sum of squares for a linear
model.

• Thus,
2 = 1

2
1
2
0

= 1
log 1

log 0

is analogous to 2 for a linear model.
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5. The Structure of Generalized Linear
Models
I A synthesis due to Nelder and Wedderburn, generalized linear models

(GLMs) extend the range of application of linear statistical models
by accommodating response variables with non-normal conditional
distributions.

I Except for the error, the right-hand side of a generalized linear model is
essentially the same as for a linear model.

c° 2012 by John Fox York SPIDA



Generalized Linear Models and Related Topics 78

I A generalized linear model consists of three components:

1. A random component, specifying the conditional distribution of the
response variable, , given the explanatory variables.
• Traditionally, the random component is a member of an “exponential

family” — the normal (Gaussian), binomial, Poisson, gamma, or
inverse-Gaussian families of distributions — but generalized linear
models have been extended beyond the exponential families.

• The Gaussian and binomial distributions are familiar.
• Poisson distributions are often used in modeling count data. Poisson

random variables take on non-negative integer values, 0 1 2 .
Some examples are shown in Figure 10.
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Figure 10. Poisson distributions for various values of the “rate” parameter
(mean) .
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• The gamma and inverse-Gaussian distributions are for positive
continuous data; some examples are given in Figure 11.

2. A linear function of the regressors, called the linear predictor,
= + 1 1 + · · · + = x0

on which the expected value of depends.
• The ’s may include quantitative predictors, but they may also include

transformations of predictors, polynomial terms, contrasts generated
from factors, interaction regressors, etc.

3. An invertible link function ( ) = , which transforms the expectation
of the response to the linear predictor.
• The inverse of the link function is sometimes called the mean function:

1( ) = .

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 81

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

(a) Gamma Distributions

y

p(
y)

0.5

1

2
5

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Inverse Gaussian Distributions

y

p(
y)

1, 1
2, 1
1, 5
2, 5

Figure 11. (a) Several gamma distributions for “scale” = 1 and various
values of the “shape” parameter . (b) Inverse-Gaussian distributions for
several combinations of values of the mean and “inverse-dispersion” .
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• Standard link functions and their inverses are shown in the following
table:

Link = ( ) = 1( )
identity
log log
inverse 1 1

inverse-square 2 1 2

square-root 2

logit log
1

1

1 +
probit 1( ) ( )
log-log log [ log ( )] exp[ exp( )]
complementary log-log log [ log (1 )] 1 exp[ exp( )]

• The logit, probit, and complementary-log-log links are for binomial
data, where represents the observed proportion and the
expected proportion of “successes” in binomial trials — that is, is
the probability of a success.
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· For the probit link, is the standard-normal cumulative distribution
function, and 1 is the standard-normal quantile function.
· An important special case is binary data, where all of the binomial

trials are 1, and therefore all of the observed proportions are
either 0 or 1. This is the case that we examined in the previous
session.

I Although the logit and probit links are familiar, the log-log and comple-
mentary log-log links for binomial data are not.
• These links are compared in Figure 12.
• The log-log or complementary log-log link may be appropriate when

the probability of the response as a function of the linear predictor
approaches 0 and 1 asymmetrically.
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Figure 12. Comparison of logit, probit, and complementary log-log links.
The probit link is rescaled to match the variance of the logistic distribution,
2 3.
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I For distributions in the exponential families, the conditional variance of
is a function of the mean together with a dispersion parameter (as

shown in the table below).
• For the binomial and Poisson distributions, the dispersion parameter

is fixed to 1.
• For the Gaussian distribution, the dispersion parameter is the usual

error variance, which we previously symbolized by 2 (and which
doesn’t depend on ).

Family Canonical Link Range of ( | )
Gaussian identity ( + )

binomial logit
0 1 (1 )

Poisson log 0 1 2
gamma inverse (0 ) 2

inverse-Gaussian inverse-square (0 ) 3
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I The canonical link for each familiy is not only the one most commonly
used, but also arises naturally from the general formula for distributions
in the exponential families.
• Other links may be more appropriate for the specific problem at hand
• One of the strengths of the GLM paradigm — in contrast, for example,

to transformation of the response variable in a linear model — is the
separation of the link function from the conditional distribution of the
response.

I GLMs are typically fit to data by the method of maximum likelihood.
• Denote the maximum-likelihood estimates of the regression parame-

ters as b b1 b .
· These imply an estimate of the mean of the response, b =

1(b + b1 1 + · · · + b ).
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• The log-likelihood for the model, maximized over the regression
coefficients, is

log 0 =
X
=1

log (b ; )

where (·) is the probability or probability-density function correspond-
ing to the family employed.

• A “saturated” model, which dedicates one parameter to each observa-
tion, and hence fits the data perfectly, has log-likelihood

log 1 =
X
=1

log ( ; )

• Twice the difference between these log-likelihoods defines the residual
deviance under the model, a generalization of the residual sum of
squares for linear models:

(y; b) = 2(log 1 log 0)

where y = { } and b = {b }.
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• Dividing the deviance by the estimated dispersion produces the scaled
deviance: (y; b) b.

• Likelihood-ratio tests can be formulated by taking differences in the
residual deviance for nested models.

• For models with an estimated dispersion parameter, one can alterna-
tively use incremental -tests.

• Wald tests for individual coefficients are formulated using the estimated
asymptotic standard errors of the coefficients.

I Some familiar examples:
• Combining the identity link with the Gaussian family produces the

normal linear model.
· The maximum-likelihood estimates for this model are the ordinary

least-squares estimates.
• Combining the logit link with the binomial family produces the logistic-

regression model (linear-logit model).
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• Combining the probit link with the binomial family produces the linear
probit model.
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6. Poisson GLMs for Count Data
I Poisson generalized linear models arise in two common formally

identical but substantively distinguishable contexts:

1. when the response variable in a regression model takes on non-negative
integer values, such as a count;

2. to analyze associations among categorical variables in a contingency
table of counts.

I The canonical link for the Poisson family is the log link.
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6.1 Over-Dispersed Binomial and Poisson Models
I The binomial and Poisson GLMs fix the dispersion parameter to 1.

I It is possible to fit versions of these models in which the dispersion is a
free parameter, to be estimated along with the coefficients of the linear
predictor
• The resulting error distribution is not an exponential family; the models

are fit by “quasi-likelihood.”

I The regression coefficients are unaffected by allowing dispersion
different from 1, but the coefficient standard errors are multiplied by the
square-root of b.
• Because the estimated dispersion typically exceeds 1, this inflates the

standard errors
• That is, failing to account for “over-dispersion” produces misleadingly

small standard errors.
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I So-called over-dispersed binomial and Poisson models arise in several
different circumstances.
• For example, in modeling proportions, it is possible that
· the probability of success varies for different individuals who

share identical values of the predictors (this is called “unmodeled
heterogeneity”);
· or the individual successes and failures for a “binomial” observation

are not independent, as required by the binomial distribution.

I The negative-binomial distribution is also frequently used to model
over-dispersed count data.
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7. Diagnostics for GLMs
I Most regression diagnostics extend straightforwardly to generalized

linear models.

I These extensions typically take advantage of the computation of
maximum-likelihood estimates for generalized linear models by iterated
weighted least squares (the procedure typically used to fit GLMs).
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7.1 Outlier, Leverage, and Influence Diagnostics
7.1.1 Hat-Values
I Hat-values for a generalized linear model can be taken directly from the

final iteration of the IWLS procedure

I They have the usual interpretation — except that the hat-values in a
GLM depend on as well as on the configuration of the ’s.
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7.1.2 Residuals
I Several kinds of residuals can be defined for generalized linear models:
• Response residuals are simply the differences between the observed

response and its estimated expected value: b .
• Working residuals are the residuals from the final WLS fit.
· These may be used to define partial residuals for component-plus-

residual plots (see below).
• Pearson residuals are case-wise components of the Pearson

goodness-of-fit statistic for the model:b1 2( b )qb ( | )
where is the dispersion parameter for the model and ( | ) is the
variance of the response given the linear predictor.
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• Standardized Pearson residuals correct for the conditional response
variation and for the leverage of the observations:

=
bqb ( | )(1 )

.
• Deviance residuals, , are the square-roots of the case-wise

components of the residual deviance, attaching the sign of b .

I Standardized deviance residuals are
= qb(1 )

I Several different approximations to studentized residuals have been
suggested.
• To calculate exact studentized residuals would require literally refitting

the model deleting each observation in turn, and noting the decline in
the deviance.
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• Here is an approximation due to Williams:

=
q
(1 ) 2 + 2

where, once again, the sign is taken from b .
• A Bonferroni outlier test using the standard normal distribution may be

based on the largest absolute studentized residual.
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7.1.3 Influence Measures
I An approximation to Cook’s distance influence measure is

=
2b( + 1) × 1

I Approximate values of dfbeta and dfbetas (influence and standardized
influence on each coefficient) may be obtained directly from the final
iteration of the IWLS procedure.

I There are two largely similar extensions of added-variable plots to
generalized linear models, one due to Wang and another to Cook and
Weisberg.
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7.2 Nonlinearity Diagnostics
I Component-plus-residual plots also extend straightforwardly to general-

ized linear models.
• Nonparametric smoothing of the resulting scatterplots can be impor-

tant to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to examine.

• Similar effects can occur for binomial and Poisson data.

I Component-plus-residual plots use the linearized model from the last
step of the IWLS fit.
• For example, the partial residual for adds the working residual to

.
• The component-plus-residual plot graphs the partial residual against

.
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8. Logit and Loglinear Models for
Contingency Tables
8.1 The Binomial Logit Model for Contingency Tables
I When the explanatory variables — as well as the response variable

— are discrete, the joint sample distribution of the variables defines a
contingency table of counts.

I An example, drawn from The American Voter (Converse et al., 1960),
appears below.
• This table, based on data from a sample survey conducted after the

1956 U.S. presidential election, relates voting turnout in the election
to strength of partisan preference, and perceived closeness of the
election:
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Turnout
Perceived
Closeness

Intensity of
Preference Voted Did Not

Vote
One-Sided Weak 91 39

Medium 121 49
Strong 64 24

Close Weak 214 87
Medium 284 76
Strong 201 25
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• The following table gives the empirical logit for the response variable,

log
proportion voting

proportion not voting
for each of the six combinations of categories of the explanatory
variables:

Perceived
Closeness

Intensity of
Preference log

Voted
Did Not Vote

One-Sided Weak 0.847
Medium 0.904
Strong 0.981

Close Weak 0.900
Medium 1.318
Strong 2.084
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· For example,
logit(voted|one-sided, weak preference)

= log
91 130

39 130

= log
91

39
= 0 847

· Because the conditional proportions voting and not voting share the
same denominator, the empirical logit can also be written as

log
number voting

number not voting
· The empirical logits are graphed in Figure 13, much in the manner

of profiles of cell means for a two-way analysis of variance.
I Logit models are fully appropriate for tabular data.
• When, as in the example, the explanatory variables are qualitative or

ordinal, it is natural to use logit or probit models that are analogous to
analysis-of-variance models.
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Intensity of Preference

Lo
gi

t(V
ot

ed
/D

id
 N

ot
 V

ot
e)

Weak Medium Strong

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0 Close

One-Sided

Figure 13. Empirical logits for the American Voter data.

c° 2012 by John Fox York SPIDA

Generalized Linear Models and Related Topics 105

• Treating perceived closeness of the election as the ‘row’ factor and
intensity of partisan preference as the ‘column’ factor, for example,
yields the model

logit = + + +

where
· is the conditional probability of voting in combination of levels

of perceived closeness and of preference;
· is the general mean of turnout in the population;
· is the main effect on turnout of membership in the th level of

perceived closeness;
· is the main effect on turnout of membership in the th levels of

preference; and
· is the interaction effect on turnout of simultaneous membership

in levels of perceived closeness and of preference.
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• Under the usual sigma constraints, this model leads to deviation-coded
regressors (contr.sum in R), as in the analysis of variance.

• Likelihood-ratio tests for main-effects and interactions can be con-
structed in close analogy to the incremental -tests for the two-way
ANOVA model.
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8.2 Loglinear Models
I Poisson GLMs may also be used to fit loglinear models to a contingency

table of frequency counts, where the object is to model association
among the variables in the table.

I The variables constituting the classifications of the table are treated as
‘explanatory variables’ in the Poisson model, while the cell count plays
the role of the ‘response.’

I We previously examined Campbell et al.’s data on voter turnout in the
1956 U. S. presidential election
• We used a binomial logit model to analyze a three-way contingency

table for turnout by perceived closeness of the election and intensity
of partisan preference.

• The binomial logit model treats turnout as the response.

I An alternative is to construct a log-linear model for the expected cell
count.
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• This model looks very much like a three-way ANOVA model, where in
place of the cell mean we have the log cell expected count:

log = + + +

+ + + +

• Here, variable 1 is perceived closeness of the election; variable 2 is
intensity of preference; and variable 3 is turnout.

• Although a term such as looks like an ‘interaction,’ it actually
models the association between variables 1 and 2.

• The three-way term allows the association between any pair of
variables to be different in different categories of the third variable; it
thus represents an interaction in the usual sense of that concept.

I In fitting the log-linear model to data, we can use sigma-constraints on
the parameters, much as we would for an ANOVA model.
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I In the context of a three-way contingency table, the loglinear model
above is a saturated model, because it has as many independent
parameters (12) as there are cells in the table.

I The likelihood-ratio test for the three-way term Closeness × Preference
× Turnout is identical to the test for the Closeness × Preference
interaction in the logit model in which Turnout is the response variable.

I In general, as long as we fit the parameters for the associations
among the explanatory variable (here Closeness×Preference and, of
course, its lower-order relatives, Closeness and Preference) and for the
marginal distribution of the response (Turnout), the loglinear model for a
contingency table is equivalent to a logit model.
• There is, therefore, no real advantage to using a loglinear model in

this setting.
• Loglinear models, however, can be used to model association in other

contexts.
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9. Implementation of GLMs in R
I The glm() function in R is very similar in use to lm(),

glm(formula, family, data, subset,
weights, na.action, contrasts)

I The family argument is one of gaussian (the default), binomial,
poisson, Gamma, inverse.gaussian, quasi, quasibinomial, or
quasipoisson.
• It is possible to write functions for additional families (e.g., the

negative.binomial family for count data in the MASS package).

I The “family-generator” function specified as the value of the family
argument can itself take a link argument (and possibly other arguments);
in each case there is a default link.
• The available links for each family ( ) and the default link (•) are given

in the following table:
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link
family identity inverse sqrt 1/mu^2
gaussian •
binomial
poisson
Gamma •
inverse.
gaussian •
quasi •
quasibinomial
quasipoisson
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link
family log logit probit cloglog
gaussian
binomial •
poisson •
Gamma
inverse.
gaussian
quasi
quasibinomial •
quasipoisson •
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