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1. Topics
I Multiple regression

I Elliptical geometry of linear least-squares regression

I Dummy-variable regression

I Regression diagnostics (as time permits)

I Implementation of linear models in R
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I Principal sources:
• Fox, Applied Regression Analysis and Generalized Linear Models,

Second Edition (Sage, 2008)
• Fox and Weisberg, An R Companion to Applied Regression, Second

Edition (Sage, 2011)
• Fox, A Mathematical Primer for Social Statistics (Sage, 2009)
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2. Multiple Regression
I The linear multiple-regression model relates a quantitative response

variable to one or several quantitative explanatory variables.
• In its basic form, the multiple regression model specifies linear, additive

relationships, but it is readily generarlized to certain kinds of nonlinear
relationships, interactions, and categorical explanatory variables.

2.1 The Multiple-Regression Model
I The statistical model for multiple regression is

= + 1 1 + 2 2 + · · · + +
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• In vector form:

= [1 1 2 ]
1

2...
+

= x0
(1× +1)( +1×1)

+

• Written as a matrix equation for observations:
1

2
... =

1 11 · · · 1

1 21 · · · 2
... ... ...
1 1 · · ·

1... +

1

2
...

y
( ×1)

= X
( × +1)( +1×1)

+
( ×1)

· X is called the model-matrix for the regression.
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I The assumptions underlying the model concern the errors, :
• Linearity. ( ) = 0, which implies that

( ) = + 1 1 + 2 2 + · · · +
• Constant Variance. ( ) = 2, which implies that

( | 1 ) = 2

• Normality. (0 2), which implies that
| 1 ( + 1 1 + 2 2 + · · · + 2)

The first three assumptions are illustrated in Figure 1 for a single
(simple linear regression).

• Independence. independent for 6= . These assumptions can
be written compactly as N (0, 2I ).

• Fixed ’s or ’s independent of
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x1 x2 x3 x4 x5
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X

Y

p(Y|x)

E(Y) = x

Figure 1. The assumptions of linearity, normality, and constant variance in
the simple-regression model.
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I Under these assumptions (or particular subsets of them), the least-
squares estimators 1 of 1 are
• linear functions of the data, and hence relatively simple:

b = (X0X) 1X0y
with covariance matrix

(b) = 2(X0X) 1

• unbiased: (b) = .
• maximally efficient among unbiased estimators;
• maximum-likelihood estimators;
• normally distributed.
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I The slope coefficient in multiple regression has sampling variance

( ) =
1

1 2 ×
2P

=1( )2

where 2 is the multiple correlation from the regression of on all of
the other ’s.
• The second factor is essentially the sampling variance of the slope in

simple regression, although the error variance 2 is generally smaller
than in simple regression.

• The first factor — called the variance-inflation factor — is large
when the explanatory variable is strongly correlated with other
explanatory variables (the problem of collinearity).

I Fitted values and residuals for the regression are given respectively byby = {b} = Xb
e = { } = y by
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2.2 Confidence Intervals and Hypothesis Tests
2.2.1 Individual Slope Coefficients
I Confidence intervals and hypothesis tests for individual coefficients

closely follow the pattern of inference for means:
• The variance of the residuals provides an unbiased estimator of 2:

2 =

P
2

1

• Using 2 , we can calculate the standard error of :

SE( ) =
1q
1 2

×qP
( )2

• Confidence intervals and tests, based on the -distribution with 1
degrees of freedom, follow straightforwardly.
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2.2.2 All Slopes
I We can also test the global or ‘omnibus’ null hypothesis that all of the

regression slopes are zero:
0: 1 = 2 = · · · = = 0

which is not quite the same as testing the separate hypotheses
(1)
0 : 1 = 0;

(2)
0 : 2 = 0; ;

( )
0 : = 0

• An -test for the omnibus null hypothesis is given by

0 =

RegSS

RSS
1

=
1 ×

2

1 2

where RegSS =
P
(b )2 and RSS =

P
2 are, respectively, the

regression and residual sums of squares, which add to TSS, the total
sum of squares.
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· Then 2 = RegSS/TSS is the squared multiple correlation.
• Under the null hypothesis, this test statistic follows an -distribution

with and 1 degrees of freedom.
• The calculation of the omnibus -statistic can be organized in an

analysis-of-variance table:

Source Sum of Squares df Mean Square

Regression RegSS
RegSS RegMS

RMS

Residuals RSS 1
RSS

1
Total TSS 1
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• When the null hypothesis is true, RegMS and RMS provide indepen-
dent estimates of the error variance, so the ratio of the two mean
squares should be close to one.

• When the null hypothesis is false, RegMS estimates the error variance
plus a positive quantity that depends upon the ’s:

( 0)
(RegMS)
(RMS)

=
2 + 0

1X
0X 1
2

2 + positive quantity
2

where 1 = [ 1 ]0 and X = { }.
• We consequently reject the omnibus null hypothesis for values of 0

that are sufficiently larger than 1.
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2.2.3 A Subset of Slopes
I Consider the hypothesis

0 : 1 = 2 = · · · = = 0

where 1 .
• The ‘full’ regression model, including all of the explanatory variables,

may be written:
= + 1 1 + · · · + + +1 +1 + · · · + +

• If the null hypothesis is correct, then the first of the ’s are zero,
yielding the ‘null’ model

= + +1 +1 + · · · + +

• The null model omits the first explanatory variables, regressing on
the remaining explanatory variables.
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• An -test of the null hypothesis is based upon a comparison of these
two models:
· RSS1 and RegSS1 are the residual and regression sums of squares

for the full model.
· RSS0 and RegSS0 are the residual and regression sums of squares

for the null model.
· Because the null model is a special case of the full model, RSS0

RSS1. Equivalently, RegSS0 RegSS1.
· If the null hypothesis is wrong and (some of) 1 are nonzero,

then the incremental (or ‘extra’) sum of squares due to fitting the
additional explanatory variables

RSS0 RSS1 = RegSS1 RegSS0
should be large.
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· The -statistic for testing the null hypothesis is

0 =

RegSS1 RegSS0

RSS1
1

=
1 ×

2
1

2
0

1 2
1

· Under the null hypothesis, this test statistic has an -distribution
with and 1 degrees of freedom.
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2.2.4 General Linear Hypotheses
I More generally, we can test the linear hypothesis

0: L
( × +1)( +1×1)

= c
( ×1)

• L and c contain pre-specified constants.
• The hypothesis matrix L is of full row rank + 1.

I The test statistic

0 =
(Lb c)0 [L(X0X) 1L0] 1 (Lb c)

2

follows an -distribution with and 1 degrees of freedom if 0

is true.

I Tests of individual coefficients, of all slope coefficients, and of subsets
of coefficients can all be expressed in this form.
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3. Elliptical Geometry of Regression
I The material in this section was strongly influenced by Monette (1990),

“Geometry of Multiple Regression and Interactive 3-D Graphics”; and
Friendly, Ornstein, and Fox, (2012) “Elliptical Insights: Understanding
Statistical Methods through Elliptical Geometry.”

3.1 The Standard Data Ellipse
I Consider the quadratic form (x x)0S 1 (x x), where x is a × 1

vector of explanatory-variable values, x is the vector of means of the
’s, and S is the sample covariance matrix of the ’s.

I Setting the quadratic form to 1 produces the equation of an ellipsoid—
called the standard data ellipsoid—centred at the means of the
explanatory variables.
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I For two variables, 1 and 2, the standard data ellipse has the equation
1P

2
1

P
2
2 (

P
1 2)

2 [ 1 1 2 2]

×
P

2
2

P
1 2P

1 2

P
2
1

¸
1 1

2 2

¸
= 1

where the s are deviations from the means .

• The horizontal shadow of the ellipse is twice the standard deviation of
1, and the vertical shadow is twice the standard deviation of 2 (see

Figure 2).
• Figure 3 shows data ellipses corresponding to different correlations.
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(a)

X1

X2

S1

S2
  (X1, X2)

(b)

X1

X2

S1

S2

  (X1, X2)

Figure 2. Scatterplot and standard data ellipse for (a) two highly correlated
variables and (b) two uncorrelated variables, 1 and 2. In each panel, the
standard ellipse is centred at the point of means ( 1 2); its shadows on
the axes give the standard deviations of the two variables. (The standard
deviations are the half-widths of the shadows.)
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Figure 3. Scatterplots and standard data ellipses corresponding to differ-
ent correlations. In each case, 1 = 10, 2 = 20, ( 1) = 2, and
( 2) = 3.
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I This representation of the data is most compelling when the variables
are multivariately normally distributed.
• In this case, the means and covariance matrix of the ’s are sufficient

statistics for their joint distribution (that is, exhaust all the information
in the data about the parameters of the distribution), and the standard
data ellipsoid estimates a constant-density contour of the joint
distribution.

• Even when variables are not multivariate normal, the standard
ellipsoid is informative because of the role of the means, variances,
and covariances in least-squares regression.

I Figure 4 shows the standard data ellipse and the least-squares line for
the regression of on .
• For bivariate-normal data, vertical slices of the data ellipse represent

the conditional distibutions of fixing the value of , and the bisectors
of these slices given the conditional means, | .

• As a consequence, the least-squares line goes through the points of
c° 2012 by John Fox York SPIDA
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vertical tangency of the ellipse.

I As illustrated in Figure 5, many properties of least-squares regression
are illuminated by the standard data ellipse:
• The vertical slice in the centre of the ellipse shows the conditional

variation of given , that is (diregarding degrees of freedom) twice
the standard deviation of the residuals, .

• Where the least-squares line intersects the ellipse gives the correlation
between and — actually, the correlation times the standard
deviation of .

• The diagram also shows the relationship between the correlation and
the slope of the regression of on .
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Figure 4. The least-squares line goes through the vertical bisectors and
the points of vertical tangency of the standard data ellipse.
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Figure 5. The standard data ellipse illuminates many characteristics of
linear least-squares regression and correlation.
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3.2 Joint Confidence Regions
I Consider the -test statistic for the linear hypothesis that the slope

coefficients 1 = ( 1 )0 in a multiple regression are all equal to
particular values, (0)

1

0 =
(b1

(0)
1 )

0V 1
11 (b1

(0)
1 )

2

where V11 represents the square submatrix consisting of the entries in
the rows and columns of (X0X) 1 for the slope coefficients in b1.

I This test can be turned around to produce a 100(1 )% joint confidence
region for the regression parameters 1:

Pr

³
b1

(0)
1

´0
V 1
11

³
b1

(0)
1

´
2 1 = 1

where 1 is the critical value of with and 1 degrees
of freedom, corresponding to a right-tail probability of .
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I The joint confidence region for 1 is thus
all 1for which (b1 1)

0V 1
11 (b1 1)

2
1

• This region represents an ellipsoid in the dimensional parameter
space (“ -space”) of the slope coefficients.

• Like a confidence interval, a joint confidence region is a portion of
the parameter space constructed so that, with repeated sampling,
a preselected percentage of regions will contain the true parameter
values.

• Unlike a confidence interval, however, which pertains to a single
coefficient , a joint confidence region encompasses all combinations
of values for the parameters 1 that are simultaneously
acceptable at the specified level of confidence.
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I In the case of two explanatory variables 1 and 2 with slopes 1 and
2, the joint confidence region for the slopes takes the form of an ellipse

in the { 1 2} plane centred at ( 1 2), with equation

[ 1 1 2 2]

" X
2
1

X
1 2X

1 2

X
2
2

#
1 1

2 2

¸
2 2

2 3

where the = are deviations from the means of 1 and 2.

I Figure 6 shows joint-confidence ellipses for two cases: (a) in which
1 and 2 are highly correlated, and (b) in which 1 and 2 are

uncorrelated.
• The outer ellipse is drawn at a level of confidence of 95%.
• The inner ellipse (the confidence-interval generating ellipse) is drawn

so that its perpendicular shadows on the axes are 95% confidence
intervals for the individual ’s.
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(a)

0
β1

β2

  (B1, B2)

Confidence interval for β1

Confidence interval
for β2

(b)

0
β1

β2

  (B1, B2)

Confidence interval for β1

Confidence interval
for β2

Figure 6. Illustrative joint confidence ellipses for the slope coefficients 1
and 2 in multiple-regression analysis. In ( ), the ’s are positively corre-
lated, producing a joint confidence ellipse that is negatively tilted. In ( ),
the ’s are uncorrelated, producing a joint confidence ellipse with axes
parallel to the axes of the parameter space.
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I The confidence interval for the individual coefficient 1 can be written:

all 1 for which ( 1 1)
2

P
2
2P

2
1

P
2
2 (

P
1 2)

2
2

1 3

or, more conventionally,

1 3sP
2
1

1 2
12

1 1 + 3sP
2
1

1 2
12

• The individual confidence intervals for the regression coefficients are
very nearly the perpendicular “shadows” (i.e., projections) of the joint
confidence ellipse onto the 1 and 2 axes.

• The only slippage here is due to the right-hand-side constant:
2 2

2 3 for the joint confidence region, and 2
1 3 for the

confidence interval.
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• For a 95% region and interval, if the residual degrees of freedom 3
are large, then 2 05 2 3 ' 2

05 2 = 5 99, while 05 1 3 ' 2
05 1 =

3 84.
• Put another way, using 5 99 2 in place of 3 84 2 produces individual

intervals at approximately the 1 Pr( 2
1 5 99) = 986 (rather than

.95) level of confidence (but a joint 95% confidence region).
• If we construct the joint confidence region using the multiplier 3.84, the

resulting smaller ellipse produces shadows that give approximate 95%
confidence intervals for individual coefficients [and a smaller joint level
of confidence of 1 Pr( 2

2 3 84) = 853]. This confidence-interval
generating ellipse is shown along with the joint confidence ellipse in
Figure 6.
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I The confidence-interval generating ellipse can be projected onto any
line through the origin of the { 1, 2} plane.
• Each line represents a linear combination of 1 and 2, and the

shadow of the ellipse gives the corresponding confidence interval for
that linear combination of the parameters.

• See Figure 7 for the linear combination 1 + 2; the line representing
1+ 2 is drawn through the origin and the point (1, 1), the coefficients

of the parameters in the linear combination.
• Directions in which the ellipse is narrow correspond to linear combina-

tions of the parameters that are relatively precisely estimated.
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β1

β2

(1, 1)

  (B1, B2)

 Confidence
 interval
 for β1 + β2

Figure 7. To find the 95% confidence interval for the linear combination of
coefficients 1+ 2, find the perpendicular shadow of the confidence-inter-
val generating ellipse on the line through the origin and the point (1, 1).
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I It is illuminating to examine the relationship between the joint confidence
region for the regression coefficients 1 and 2, and the data ellipse for
1 and 2.

• The joint confidence ellipse for the slope coefficients and the standard
data ellipse of the ’s are, except for a constant scale factor and their
respective centres, inverses of each other—that is, the confidence
ellipse is (apart from its size and location) the 90 rotation of the data
ellipse.

• If the data ellipse is positively tilted, reflecting a positive correlation
between the ’s, then the confidence ellipse is negatively tilted,
reflecting negatively correlated coefficient estimates.

• Directions in which the data ellipse is relatively thick, reflecting a
substantial amount of data, are directions in which the confidence
ellipse is relatively thin, reflecting substantial information about the
corresponding linear combination of regression coefficients.
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• When the ’s are strongly positively correlated (and assuming, for
simplicity, that the standard deviations of 1 and 2 are similar), there
is a great deal of information about 1 + 2 but little about 1 2 (as
in Figure 7).
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4. Dummy-Variable Regression
4.1 A Dichotomous Explanatory Variable
I The simplest case: one dichotomous and one quantitative explanatory

variable.

I Assumptions:
• Relationships are additive — the partial effect of each explanatory

variable is the same regardless of the specific value at which the other
explanatory variable is held constant.

• The other assumptions of the regression model hold.
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I The motivation for including a qualitative explanatory variable is the
same as for including an additional quantitative explanatory variable:
• to account more fully for the response variable, by making the errors

smaller; and
• to avoid a biased assessment of the impact of an explanatory variable,

as a consequence of omitting another explanatory variables that is
related to it.
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I Figure 8 represents idealized examples, showing the relationship
between education and income among women and men.
• In both cases, the within-gender regressions of income on education

are parallel. Parallel regressions imply additive effects of education
and gender on income.

• In (a), gender and education are unrelated to each other: If we ignore
gender and regress income on education alone, we obtain the same
slope as is produced by the separate within-gender regressions;
ignoring gender inflates the size of the errors, however.

• In (b) gender and education are related, and therefore if we regress
income on education alone, we arrive at a biased assessment of
the effect of education on income. The overall regression of income
on education has a negative slope even though the within-gender
regressions have positive slopes.
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Figure 8. In both cases the within-gender regressions of income on educa-
tion are parallel: in (a) gender and education are unrelated; in (b) women
have higher average education than men.
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I We could perform separate regressions for women and men. This
approach is reasonable, but it has its limitations:
• Fitting separate regressions makes it difficult to estimate and test for

gender differences in income.
• Furthermore, if we can assume parallel regressions, then we can more

efficiently estimate the common education slope by pooling sample
data from both groups.
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I One way of formulating the common-slope model is
= + + +

where , called a dummy-variable regressor or an indicator variable, is
coded 1 for men and 0 for women:

=

½
1 for men
0 for women

• Thus, for women the model becomes
= + + (0) + = + +

• and for men
= + + (1) + = ( + ) + +

I These regression equations are graphed in Figure 9.
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Figure 9. The parameters in the additive dummy-regression model.
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4.1.1 Regressors vs. Explanatory Variables
I This is our initial encounter with an idea that is fundamental to many

linear models: the distinction between explanatory variables and
regressors.
• Here, gender is a qualitative explanatory variable (or factor ), with

categories (also called levels) male and female.
• The dummy variable is a regressor, representing the explanatory

variable gender.
• In contrast, the quantitative explanatory variable (or covariate) income

and the regressor are one and the same.

I We will see later that an explanatory variable can give rise to several
regressors, and that some regressors are functions of more than one
explanatory variable.
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4.1.2 How Dummy Regression Works
I Interpretation of parameters in the additive dummy-regression model:
• gives the difference in intercepts for the two regression lines.
· Because these regression lines are parallel, also represents the

constant separation between the lines — the expected income
advantage accruing to men when education is held constant.
· If men were disadvantaged relative to women, then would be

negative.
• gives the intercept for women, for whom = 0.
• is the common within-gender education slope.
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I Essentially similar results are obtained if we code zero for men and
one for women (Figure 10):
• The sign of is reversed, but its magnitude remains the same.
• The coefficient now gives the income intercept for men.
• It is therefore immaterial which group is coded one and which is coded

zero.
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Figure 10. Parameters corresponding to the alternative coding = 0 for
men and = 1 for women.
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4.2 Polytomous Explanatory Variables
I Consider the regression of the rated prestige of occupations on their

income and education levels.
• Let us classify the occupations into three categories: (1) professional

and managerial; (2) ‘white-collar’; and (3) ‘blue-collar’.
• The three-category classification can be represented in the regression

equation by introducing two dummy regressors:
Category 2 3

Blue Collar 0 0
White Collar 1 0
Professional & Managerial 0 1

• The regression model is then
= + 1 1 + 2 2 + 2 2 + 3 3 +

where 1 is income and 2 is education.
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• This model describes three parallel regression planes, which can differ
in their intercepts (see Figure 11):

Blue Collar: = + 1 1 + 2 2 +
White Collar: = ( + 2) + 1 1 + 2 2 +
Professional: = ( + 3) + 1 1 + 2 2 +

· gives the intercept for blue-collar occupations.
· 2 represents the constant vertical distance between the regression

planes for white-collar and blue-collar occupations.
· 3 represents the constant vertical difference between the parallel

regression planes for professional and blue-collar occupations (fixing
the values of education and income).

• Blue-collar occupations are coded 0 for both dummy regressors, so
‘blue collar’ serves as a baseline category to which the other occupa-
tional categories are compared.
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Figure 11. The additive dummy-regression model showing three parallel
regression planes.
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• The choice of a baseline category is usually arbitrary, for we would
fit the same three regression planes regardless of which of the three
categories is selected for this role.

I Because the choice of baseline is arbitrary, we want to test the null
hypothesis of no partial effect of occupational type,

0: 2 = 3 = 0

but the individual hypotheses 0: 2 = 0 and 0: 3 = 0 are of less
interest.
• The hypothesis 0: 2 = 3 = 0 can be tested by the incremental-

sum-of-squares approach, removing 2 and 3 from the model.
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I For a polytomous explanatory variable with categories, we code 1
dummy regressors.
• One simple scheme is to select the first category as the baseline,

and to code = 1 when observation falls in category , and 0
otherwise, for = 2 :

Category 2 3 · · ·
1 0 0 · · · 0
2 1 0 · · · 0
·
·
·

·
·
·

·
·
·

·
·
·

0 0 · · · 1
• To test the hypothesis that the effects of a qualitative explanatory

variable are nil, delete its dummy regressors from the model and
compute an incremental -test.
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4.3 Modeling Interactions
I Two explanatory variables interact in determining a response variable

when the partial effect of one depends on the value of the other.
• Additive models specify the absence of interactions.
• If the regressions in different categories of a qualitative explanatory

variable are not parallel, then the qualitative explanatory variable
interacts with one or more of the quantitative explanatory variables.

• The dummy-regression model can be modified to reflect interactions.

I Consider the hypothetical data in Figure 12 (and contrast these
examples with those shown in Figure 8, where the effects of gender and
education were additive):
• In (a), gender and education are independent, since women and men

have identical education distributions.
• In (b), gender and education are related, since women, on average,

have higher levels of education than men.
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Figure 12. In both cases, gender and education interact in determining
income. In (a) gender and education are independent; in (b) women on
average have more education than men.
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• In both (a) and (b), the within-gender regressions of income on
education are not parallel — the slope for men is larger than the slope
for women.
· Because the effect of education varies by gender, education and

gender interact in affecting income.
• It is also the case that the effect of gender varies by education. Be-

cause the regressions are not parallel, the relative income advantage
of men changes with education.
· Interaction is a symmetric concept — the effect of education varies

by gender, and the effect of gender varies by education.
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I These examples illustrate another important point: Interaction and
correlation of explanatory variables are empirically and logically distinct
phenomena.
• Two explanatory variables can interact whether or not they are related

to one-another statistically.
• Interaction refers to the manner in which explanatory variables

combine to affect a response variable, not to the relationship between
the explanatory variables themselves.
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4.3.1 Constructing Interaction Regressors
I We could model the data in the example by fitting separate regressions

of income on education for women and men.
• A combined model facilitates a test of the gender-by-education

interaction, however.
• A properly formulated unified model that permits different intercepts

and slopes in the two groups produces the same fit to the data as
separate regressions.

I The following model accommodates different intercepts and slopes for
women and men:

= + + + ( ) +

• Along with the dummy regressor for gender and the quantitative
regressor for education, I have introduced the interaction regressor

.
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• The interaction regressor is the product of the other two regressors:
is a function of and , but it is not a linear function, avoiding

perfect collinearity.
• For women,

= + + (0) + ( · 0) +
= + +

• and for men,
= + + (1) + ( · 1) +
= ( + ) + ( + ) +

I These regression equations are graphed in Figure 13:
• and are the intercept and slope for the regression of income on

education among women.
• gives the difference in intercepts between the male and female

groups
• gives the difference in slopes between the two groups.
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D 1

D 0

Figure 13. The parameters in the dummy-regression model with interac-
tion.
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· To test for interaction, we can test the hypothesis 0: = 0.

I In the additive, no-interaction model, represented the unique partial
effect of gender, while the slope represented the unique partial effect
of education.
• In the interaction model, is no longer interpretable as the unqualified

income difference between men and women of equal education —
is now the income difference at = 0.

• Likewise, in the interaction model, is not the unqualified partial effect
of education, but rather the effect of education among women.
· The effect of education among men ( + ) does not appear directly

in the model.

I Extension to polytomous factors is straight-forward.
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4.4 The Principle of Marginality
I The separate partial effects, or main effects, of education and gender

are marginal to the education-by-gender interaction.

I In general, we neither test nor interpret main effects of explanatory
variables that interact.
• If we can rule out interaction either on theoretical or empirical grounds,

then we can proceed to test, estimate, and interpret main effects.

I It does not generally make sense to specify and fit models that include
interaction regressors but that delete main effects that are marginal to
them.
• Such models — which violate the principle of marginality — are

interpretable, but they are not broadly applicable.
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• Consider the model
= + + ( ) +

· As shown in Figure 14 (a), this model describes regression lines
for women and men that have the same intercept but (potentially)
different slopes, a specification that is peculiar and of no substantive
interest.

• Similarly, the model
= + + ( ) +

graphed in Figure 14 (b), constrains the slope for women to 0, which is
needlessly restrictive.
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(a)
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α + γ

1
δ

D = 1

D = 0

Figure 14. Two models that violate the principle of marginality, by including
the interaction regressor but (a) omitting or (b) omitting .
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5. Regression Diagnostics
I Linear statistical models make strong assumptions about the structure

of data, which often do not hold in applications.

I For example, the method of least-squares is very sensitive to the
structure of the data, and can be markedly influenced by one or a few
unusual observations.

I We could abandon linear models and least-squares estimation in favor
of nonparametric regression and robust estimation.

I Alternatively, we can use “diagnostic” methods to detect problems and
to suggest solutions.
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5.1 Unusual Data
I Unusual data are problematic in linear models fit by least squares

because they can unduly influence the results of the analysis, and
because their presence may be a signal that the model fails to capture
important characteristics of the data.

I Some central distinctions are illustrated in Figure 15 for the simple
regression model = + + .
• In simple regression, an outlier is an observation whose response-

variable value is conditionally unusual given the value of the explana-
tory variable.

• In contrast, a univariate outlier is a value of or that is uncon-
ditionally unusual; such a value may or may not be a regression
outlier.
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(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 15. Unusual data in regression: (a) a low-leverage and hence un-
influential outlier; (b) a high-leverage and hence influential outlier; (c) a
high-leverage in-line observation. In each case, the solid line is the least-
-squares line for all of the data; the broken line is the least-squares line
with the unusual observation omitted.
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• Regression outliers appear in (a) and (b).
· In (a), the outlying observation has an -value that is at the centre

of the distribution; deleting the outlier has little impact on the
least-squares fit.
· In (b), the outlier has an unusual -value; its deletion markedly

affects both the slope and the intercept. Because of its unusual -
value, the outlying last observation in (b) exerts strong leverage on
the regression coefficients, while the outlying middle observation in
(a) is at a low-leverage point. The combination of high leverage with
a regression outlier produces substantial influence on the regression
coefficients.
· In (c), the last observation has no influence on the regression

coefficients even though it is a high-leverage point, because this
observation is in line with the rest of the data.
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• The following heuristic formula helps to distinguish among the three
concepts of influence, leverage and discrepancy (‘outlyingness’):

Influence on Coefficients = Leverage × Discrepancy
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5.1.1 Assessing Leverage: Hat-Values
I The hat-value is a common measure of leverage in regression. These

values are so named because it is possible to express the fitted valuesb (‘ -hat’) in terms of the observed values :by = Xb = X(X0X) 1
X0y = Hy

• Thus, the weight captures the contribution of observation to
the fitted value b : If is large, then the th observation can have a
substantial impact on the th fitted value.

I Properties of the hat-values:
• =

P
=1

2 , and so the hat-value summarizes the potential
influence (the leverage) of on all of the fitted values.

• 1 1

• The average hat-value is = ( + 1) .
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• Belsley, Kuh, and Welsch suggest that hat-values exceeding about
twice the average (or, in small samples, three times the average)
hat-value are noteworthy.

• In simple-regression analysis, the hat-values measure distance from
the mean of :

=
1
+

( )2P
=1( )2

• In multiple regression, measures distance from the centroid (point of
means) of the ’s, taking into account the correlational and variational
structure of the ’s, as illustrated for = 2 in Figure 16. Multivariate
outliers in the -space are thus high-leverage observations. The
response-variable values are not at all involved in determining
leverage.
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X1

X2

X1

X2

Figure 16. Contours of constant leverage in multiple regression with two
explanatory variables, 1 and 2. The two observations marked with solid
black dots have equal hat-values.
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5.1.2 Detecting Outliers: Studentized Residuals
I Discrepant observations usually have large residuals, but even if the

errors have equal variances (as assumed in the general linear model),
the residuals do not:

( ) = 2(1 )

• High-leverage observations tend to have small residuals, because
these observations can coerce the regression surface to be close to
them.

I Although we can form a standardized residual by calculating
0 =

1
this measure is slightly inconvenient because its numerator and
denominator are not independent, preventing 0 from following a
-distribution: When | | is large, =

pP
2 ( 1), which

contains 2, tends to be large as well.
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I Suppose that we refit the model deleting the th observation, obtaining
an estimate ( ) of that is based on the remaining 1 observations.
• Then the studentized residual

=
( ) 1

has independent numerator and denominator, and follows a -
distribution with 2 degrees of freedom.

• An equivalent procedure for finding the studentized residuals employs
a ‘mean-shift’ outlier model

= + 1 1 + · · · + + +

where is a dummy regressor set to one for observation and zero
for all other observations:

=

½
1 for obs.
0 otherwise
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• Thus
( ) = + 1 1 + · · · + +

( ) = + 1 1 + · · · + for 6=
· It would be natural to specify this model if, before examining the

data, we suspected that observation differed from the others.
· Then to test 0: = 0, we can calculate 0 = b SE(b). This test

statistic is distributed as 2 under 0, and is the studentized
residual .
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I In most applications we want to look for any outliers that may occur in
the data; we can in effect refit the mean-shift model times, producing
studentized residuals 1 2 . (It is not literally necessary to
perform auxiliary regressions.)
• Usually, our interest then focuses on the largest absolute , denoted

max.
• Because we have picked the biggest of test statistics, it is not

legitimate simply to use 2 to find a -value for max.

I One solution to this problem of simultaneous inference is to perform a
Bonferroni adjustment to the -value for the largest absolute : Let
0 = Pr( 2 max).
• Then the Bonferroni -value for testing the statistical significance of

max is = 2 0.
• Note that a much larger max is required for a statistically significant

result than would be the case for an ordinary individual -test.
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I Another approach is to construct a quantile-comparison plot for the
studentized residuals, plotting against either the or normal distribution.
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5.1.3 Measuring Influence
I Influence on the regression coefficients combines leverage and discrep-

ancy.

I The most direct measure of influence simply expresses the impact on
each coefficient of deleting each observation in turn:

dfbeta = ( ) for = 1 and = 0 1

where the are the least-squares coefficients calculated for all of the
data, and the ( ) are the least-squares coefficients calculated with
the th observation omitted. (So as not to complicate the notation here, I
denote the least-squares intercept as 0.)

I One problem associated with using the dfbeta is their large number —
( + 1).
• It is useful to have a single summary index of the influence of each

observation on the least-squares fit.
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• Cook (1977) has proposed measuring the ‘distance’ between the
and the corresponding ( ) by calculating the -statistic for the

‘hypothesis’ that = ( ) for = 0 1 .
· This statistic is recalculated for each observation = 1 .
· The resulting values should not literally be interpreted as -tests,

but rather as a distance measure that does not depend upon the
scales of the ’s.
· Cook’s statistic can be written (and simply calculated) as

=
02

+ 1
×
1

· In effect, the first term in the formula for Cook’s is a measure of
discrepancy, and the second is a measure of leverage.
· We look for values of that are substantially larger than the rest..
· Work by Chatterjee and Hadi implies that 4 ( 1) are

noteworthy.
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5.1.4 Joint Influence: Added-Variable Plots
I As illustrated in Figure 17, subsets of observations can be jointly

influential or can offset each other’s influence.
• Influential subsets or multiple outliers can often be identified by

applying single-observation diagnostics, such as Cook’s and
studentized residuals, sequentially.

• It can be important to refit the model after deleting each point, because
the presence of a single influential value can dramatically affect the fit
at other points, but the sequential approach is not always successful.

I Although it is possible to generalize deletion statistics to subsets of
several points, the very large number of subsets usually renders this
approach impractical.

I An attractive alternative is to employ graphical methods, and a partic-
ularly useful influence graph is the added-variable plot (also called a
partial-regression plot or an partial-regression leverage plot).
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(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 17. Jointly influential observations: (a) a pair of jointly influential
points; (b) a widely separated jointly infuential pair; (c) two points that
offset each other’s influence. In each case the heavier solid line is the
least-squares line for all of the data, the broken line deletes the black point,
and the lighter solid line deletes both the gray and the black points.
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• Let (1) represent the residuals from the least-squares regression of
on all of the ’s with the exception of 1:

= (1) +
(1)
2 2 + · · · + (1)

+
(1)

• Likewise, (1) are the residuals from the least-squares regression of
1 on all the other ’s:

1 =
(1) +

(1)
2 2 + · · · + (1)

+
(1)

• The notation emphasizes the interpretation of the residuals (1) and
(1) as the parts of and 1 that remain when the effects of 2

are ‘removed.’
• The residuals (1) and (1) have the following interesting properties:

1. The slope from the least-squares regression of (1) on (1) is simply
the least-squares slope 1 from the full multiple regression.
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2. The residuals from the simple regression of (1) on (1) are the same
as those from the full regression:

(1)
= 1

(1)
+

No constant is required, because both (1) and (1) have means of 0.
3. The variation of (1) is the conditional variation of 1 holding the other

’s constant and, as a consequence, the standard error of 1 in the
auxiliary simple regression

SE( 1) = qP (1)2

is (except for ) the multiple-regression standard error of 1. Unless
1 is uncorrelated with the other ’s, its conditional variation is smaller

than its marginal variation — much smaller, if 1 is strongly collinear
with the other ’s.
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• Plotting (1) against (1) permits us to examine leverage and influence
on 1. Because of properties 1–3, this plot also provides a visual
impression of the precision of estimation of 1.

• Similar added-variable plots can be constructed for the other regres-
sion coefficients:

Plot ( ) versus ( ) for each = 0
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5.1.5 Influence on Other Regression “Outputs”
I I have focussed on influence of observations on regression coefficients,

but it is possible to consider influence on other regression “outputs” such
as correlations and coefficient standard errors.
• For example, an in-line (i.e., non-outlying) high-leverage observation

serves to increase the precision — or, perhaps, apparent precision
— of estimation, e.g., by increasing the variation of one or more
explanatory variables or by decreasing collinearity among them.

• In contrast, an outlier at a low-leverage point decreases the precision
of estimation of the regression coefficients by inflating the standard
error of the regression.

• In both of these cases, the observation in question may not exert much
influence at all on the values of the coefficients.
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5.2 Non-Normally Distributed Errors
I The assumption of normally distributed errors is almost always arbitrary,

but the central-limit theorem assures that inference based on the least-
squares estimator is approximately valid. Why should we be concerned
about non-normal errors?
• Although the validity of least-squares estimation is robust, the

efficiency of least squares is not: The least-squares estimator is
maximally efficient among unbiased estimators when the errors
are normal. For heavy-tailed errors, the efficiency of least-squares
estimation decreases markedly.

• Highly skewed error distributions, aside from their propensity to
generate outliers in the direction of the skew, compromise the
interpretation of the least-squares fit as a conditional typical value of

.
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• A multimodal error distribution suggests the omission of one or more
discrete explanatory variables that divide the data naturally into
groups.

I Quantile-comparison plots are useful for examining the distribution of
the residuals, which are estimates of the errors.
• We compare the sample distribution of the studentized residuals, ,

with the quantiles of the unit-normal distribution, (0 1), or with those
of the -distribution for 2 degrees of freedom.

• Even if the model is correct, the studentized residuals are not an
independent random sample from 2. Correlations among the
residuals depend upon the configuration of the -values, but they are
generally negligible unless the sample size is small.

• At the cost of some computation, it is possible to adjust for the de-
pendencies among the residuals in interpreting a quantile-comparison
plot.
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I The quantile-comparison plot is effective in displaying the tail behavior
of the residuals: Outliers, skewness, heavy tails, or light tails all show up
clearly.

I Other univariate graphical displays, such as histograms and density
estimates, effectively complement the quantile-comparison plot.
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5.2.1 Transformations: The Family of Powers and Roots
I A particularly useful group of transformations is the ‘family’ of powers

and roots:

• If is negative, then the transformation is an inverse power: 1 =
1 , and 2 = 1 2.

• If is a fraction, then the transformation represents a root: 1 3 = 3

and 1 2 = 1 .

I It is sometimes convenient to define the family of power transformations
in a slightly more complex manner (called the Box-Cox family):

( ) 1

I Since ( ) is a linear function of , the two transformations have the
same essential effect on the data, but, as is apparent in Figure 18, ( )

reveals the essential unity of the family of powers and roots:
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Figure 18. The Box-Cox familily of modified power transformations,
( ) = ( 1) , for values of = 1 0 1 2 3. When = 0, ( ) = log .
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• Dividing by preserves the direction of , which otherwise would be
reversed when is negative:

1 1

1

1 1 1
2 1 2 1 2
3 1 3 1 3
4 1 4 1 4

• The transformations ( ) are ‘matched’ above = 1 both in level and
slope.

• The power transformation 0 = 1 is useless, but the very useful log
transformation is a kind of ‘zeroth’ power:

lim
0

1
= log

where 2 718 is the base of the natural logarithms. Thus, we will
take (0) = log( ).
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I How a power transformation can eliminate a positive skew:
log10

1 0
9 { } 1

10 1
90 { } 1

100 2
900 { } 1

1000 3

• Descending the ladder of powers to log makes the distribution more
symmetric by pulling in the right tail.

I Power transformations require that all of the data are positive; to be
effective, the ratio of largest to smallest value cannot be too small.
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5.3 Non-Constant Error Variance
I Although the least-squares estimator is unbiased and consistent even

when the error variance is not constant, its efficiency is impaired, and
the usual formulas for coefficient standard errors are inaccurate.
• Non-constant error variance is sometimes termed ‘heteroscedasticity.’

I Because the regression surface is -dimensional, and imbedded in a
space of + 1 dimensions, it is generally impractical to assess the
assumption of constant error variance by direct graphical examination of
the data.

I It is common for error variance to increase as the expectation of grows
larger, or there may be a systematic relationship between error variance
and a particular .
• The former situation can often be detected by plotting residuals against

fitted values;
• the latter by plotting residuals against each .
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• Plotting residuals against (as opposed to b ) is generally unsatisfac-
tory, because the plot will be ‘tilted’
· There is a built-in linear correlation between and , since

= b + .
· The least-squares fit insures that the correlation between b and is

zero, producing a plot that is much easier to examine for evidence of
non-constant spread.

• Because the residuals have unequal variances even when the variance
of the errors is constant, it is preferable to plot studentized residuals
against fitted values.

• It often helps to plot | | or 2 against b .
• Following a suggestion byTukey, one can alternatively construct a

spread-level plot, graphing log absolute studentized residuals against
log fitted values (as long as all of the fitted values are positive).
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I Descending the ladder of powers and roots can eliminate a positive
association between residual spread and the level of the response.
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5.4 Nonlinearity
I The assumption that the average error, ( ), is everywhere zero implies

that the specified regression surface accurately reflects the dependency
of on the ’s.
• The term ‘nonlinearity’ is therefore not used in the narrow sense here,

although it includes the possibility that a partial relationship assumed
to be linear is in fact nonlinear.

• If, for example, two explanatory variables specified to have additive
effects instead interact, then the average error is not zero for all
combinations of -values.

• If nonlinearity, in the broad sense, is slight, then the fitted model
can be a useful approximation even though the regression surface
( | 1 ) is not captured precisely.

• In other instances, however, the model can be seriously misleading.
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I The regression surface is generally high dimensional, even after
accounting for regressors (such as dummy variables, interactions, and
polynomial terms) that are functions of a smaller number of fundamental
explanatory variables.
• As in the case of non-constant error variance, it is necessary to focus

on particular patterns of departure from linearity.
• The graphical diagnostics discussed in this section are two-

dimensional projections of the ( + 1)-dimensional point-cloud of
observations { 1 }
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5.4.1 Component+Residual Plots
I Although it is useful in multiple regression to plot against each ,

these plots can be misleading, because our interest centres on the
partial relationship between and each , controlling for the other

’s, not on the marginal relationship between and an individual ,
ignoring the other ’s.

I Plotting residuals or studentized residuals against each is frequently
helpful for detecting departures from linearity.
• As Figure 19 illustrates, however, residual plots cannot distinguish

between monotone and non-monotone nonlinearity.
· The distinction is important because monotone nonlinearity fre-

quently can be ‘corrected’ by simple transformations.
· Case (a) might be modeled by = + + .
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0

Figure 19. The residual plots of versus (bottom) are identical, even
though the regression of on in (a) is monotone while that in (b) is
non-monotone.

c° 2012 by John Fox York SPIDA

Review of Linear Models and Related Topics 97

· Case (b) cannot be linearized by a power transformation of ,
and might instead be dealt with by the quadratic regression,
= + 1 + 2

2 + .

I Added-variable plots, introduced previously for detecting influential data,
can reveal nonlinearity and suggest whether a relationship is monotone.
• These plots are not always useful for locating a transformation,

however: The added-variable plot adjusts for the other ’s, but it is
the unadjusted that is transformed in respecifying the model.

I Component+residual plots, also called partial-residual plots (as opposed
to partial-regression = added-variable plots) are often an effective
alternative.
• Component+residual plots are not as suitable as added-variable plots

for revealing leverage and influence.
• The partial residual for the th explanatory variable is

( )
= +
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• In words, add back the linear component of the partial relationship
between and to the least-squares residuals, which may include
an unmodeled nonlinear component.

• Then plot ( ) versus .
• By construction, the multiple-regression coefficient is the slope of

the simple linear regression of ( ) on , but nonlinearity may be
apparent in the plot as well.
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5.4.2 The Bulging Rule
I The following simple example suggests how a power transformation can

serve to straighten a nonlinear relationship; here, = 1
5

2 (with no
residual):

1 0.2
2 0.8
3 1.8
4 3.2
5 5.0

• These ‘data’ are graphed in part (a) of Figure 20.

• We could replace by 0 = , in which case 0 =
q

1
5 [see (b)].

• We could replace by 0 = 2, in which case = 1
5

0 [see (c)].
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Figure 20. Transformating a nonlinear relationship (a) to linearity, (b) or
(c).
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I A power transformation works here because the relationship between
and is both monotone and simple. In Figure 21:
• the curve in (a) is simple and monotone;
• in (b) monotone, but not simple;
• in (c) simple but not monotone.
· In (c), we could fit a quadratic model, b = + 1 + 2

2.

I Figure 22 introduces Mosteller and Tukey’s ‘bulging rule’ for selecting a
transformation.
• For example, if the ‘bulge’ points down and to the right, we need to

transform down the ladder of powers or up (or both).
• In multiple regression, we generally prefer to transform an (and to

leave alone).
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(a)

X

Y

(b)

X

Y
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X
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Figure 21. (a) A simple monotone relationship. (b) A monotone relation-
ship that is not simple. (c) A simple nonmonotone relationship.
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X up:

X2, X3

X down:

log X , X

Y up:
Y2
Y3

Y down:
Y

log Y

Figure 22. Mosteller and Tukey’s bulging rule for selecting linearizing trans-
formations.
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6. Implementation of Linear Models in R
I The lm() function (with important arguments):
lm(formula, data, subset, weights, na.action, contrasts)

where:
• formula is a model formula, specifying the regression equation to be

fit (see below).
• data is an optional data frame containing the data for the model,

which otherwise are located on the search path if lm() is called from
the command prompt.

• subset is an optional specification (e.g., in the form of a logical
vector or a vector of positive or negative subscripts) of the subset of
observations to which the model is to be fit.

• weights is an optional vector of weights for weighted-least-squares
(WLS) estimation.
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• na.action is an optional function to handle missing data; defaults to
na.omit (unless the global na.action option is changed).

• contrasts is an optional list specifying contrast functions for specific
factors in the model, which otherwise are taken from the factors
themselves (if they have contrasts attributes) or from the global
contrasts option, which defaults to contr.treatment (dummy
coding) for factors and contr.poly (orthogonal-polynomial coding)
for ordered factors.
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I A model formula is of the form
lhs ~ rhs

where lhs is an expression evaluating to the response variable [e.g.,
income, log(income)], and rhs specifies the “terms” in the right-
hand side of the model using operators in the following table [e.g.,
poly(age, 2) + gender*(education + experience)] :

Expression Interpretation Example
A + B include both A and B income + education
A - B exclude B from A a*b*d - a:b:d
A:B all interactions of A and B type:education
A*B A + B + A:B type*education
B %in% A B nested within A education %in% type
A/B A + B %in% A type/education
A^k all effects crossed up to order k (a + b + d)^2
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• The arithmetic operators therefore have special meaning on the
right-hand side of a model formula.

• To do arithmetic on the right-hand side of a formula, it is necessary to
“protect” the operation within a function call [e.g., log(income + 1)
or I(income^2), where I() is the identity function].

• We say that “lhs is modeled as rhs” or that “lhs is regressed on
rhs.”
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